Customer capital and firm innovation

Duong Dang

UW-Madison

January, 2025

Duong Dang (UW-Madison)

Customer capital and firm innovation

January, 2025

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

- Customer capital: Value from customer base through repeated transactions
- Important form of intangible capital:
 - Linked to firm valuation, sales, lower default risk
 - ▶ Large expense on advertising and sales; Affects how firm set prices >
- Paper goal: Study effect of customer capital on firm decision to innovate
 - Important for understanding trends in productivity dispersion, concentration, markups
 - Matters for innovation subsidies

This paper

- Develop model where
 - Firms innovate to reduce cost; Customer capital arise from consumption habits, where older households have stronger habits
 - Model makes predictions on how strength of customer capital affects R&D spending and productivity dispersion
 - Validate using industry age composition of demand

This paper

- Develop model where
 - Firms innovate to reduce cost; Customer capital arise from consumption habits, where older households have stronger habits
 - Model makes predictions on how strength of customer capital affects R&D spending and productivity dispersion
 - Validate using industry age composition of demand
- Motivated by higher consumption persistence for older households
 - Quantify effect of aging demographics: Generates 10%-35% of observed movements in R&D spending differences, concentration, markups

This paper

- Develop model where
 - Firms innovate to reduce cost; Customer capital arise from consumption habits, where older households have stronger habits
 - Model makes predictions on how strength of customer capital affects R&D spending and productivity dispersion
 - Validate using industry age composition of demand
- Motivated by higher consumption persistence for older households
 - Quantify effect of aging demographics: Generates 10%-35% of observed movements in R&D spending differences, concentration, markups
- Innovation subsidies with customer capital
 - Amplified effect on concentration and markups, 2-3 times greater than without customer capital

N 2 E N

Literature

- Customer capital:
 - ► Larkin (2013), Gourio and Rudanko (2014), Foster et. al. (2016), Baker et. al. (2023), Afrouzi et. al. (2023) ⇒ Effect on firm innovation
- Intangibles and innovation:
 - ► Cavenaile and Roldan-Blanco (2020), Cavenaile et. al. (2023), Shen (2023), De Ridder (2024) ⇒ Persistent customer capital + competition structure
- Accounting for aggregate trends in productivity dispersion, concentration, markups:
 - ▶ Karahan et. al. (2019), Peters and Walsh (2021), Bornstein (2021),
 Olmstead-Rumsey (2022), Akcigit and Ates (2023) ⇒ Complementary demand mechanism

スポット イント・イント

Outline

- Simple model
- Quantitative model
- Calibration
- Empirical support
- Effect of aging demographics
- Innovation subsidies with customer capital

Simple model

Simple model

• Two period duopoly

• First period: No production. Firm $i \in \{1, 2\}$ comes in with productivity \mathring{q}_i , invest in R&D ι_i to increase productivity in second period

Second period productivity q_i =

$$\begin{cases}
 \lambda \mathring{q}_i & \text{with probability } \iota_i \\
 \mathring{q}_i & \text{with probability } 1-\iota_i
 \end{cases}$$

• Cost of R&D: $\frac{\gamma}{2}\iota_i^2$

• Second period: Cournot competition, marginal cost $1/q_i$

Simple model

• Unit mass households, 1 unit of endowment to spend 🔊

• Preference:
$$\left(k_1^{\frac{\theta}{\rho}}c_1^{\frac{\rho-1}{\rho}} + k_2^{\frac{\theta}{\rho}}c_2^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}}$$

- * Habits/Customer capital (k_1, k_2) ; Habit strength θ
- Inverse demand:

$$p_{i} = \frac{(k_{i})^{\theta/\rho} c_{i}^{-1/\rho}}{(k_{i})^{\theta/\rho} c_{i}^{\frac{\rho-1}{\rho}} + (k_{-i})^{\theta/\rho} c_{-i}^{\frac{\rho-1}{\rho}}}$$

• More customer capital k_i raise demand & reduce demand elasticity

Image: A matrix

K A E K A E

Firm problem

- Second period:
 - Cournot game with payoff $\pi_i = (p_i 1/q_i) c_i$
 - \Rightarrow Equilibrium payoffs $\pi(k_i/k_{-i}, q_i/q_{-i})$ >
- First period:
 - Approximation of FOC

$$\iota_{i} \approx \frac{1}{\gamma} \left[\pi \left(k_{i}/k_{-i}, \lambda \dot{q}_{i}/\dot{q}_{-i} \right) - \pi \left(k_{i}/k_{-i}, \dot{q}_{i}/\dot{q}_{-i} \right) \right]$$

January, 2025

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Innovation rates and customer capital

Proposition

An increase in $(k_i/k_{-i})^{\theta}$ increases ι_i iff \blacksquare

- Customer capital have opposing effects on innovation
 - \blacktriangleright Higher demand \Rightarrow Produce more \Rightarrow Larger cost reduction from innovation
 - \blacktriangleright Lower elasticity \Rightarrow Restrict supply for markups \Rightarrow Lower innovation
- Total effect depends on relative revenue productivity

Takeaway - effect of customer capital

- Relative revenue productivity $< 1 < F(\rho)$ for follower \Rightarrow innovation moves with customer capital
- For leader:
 - With reasonable ρ , log $F(\rho) \approx 0.66$; Std of log revenue prod. ≈ 0.28 for public firms
 - $ightarrow \Rightarrow$ innovation moves with customer capital
- With stronger habits $(\theta \uparrow)$, innovation increase for leader $((k_i/k_{-i})^{\theta} \uparrow)$ and decrease for follower $((k_{-i}/k_i)^{\theta} \downarrow)$
 - ► ⇒ Leader increase productivity gap ((q_i/q_{-i}) ↑), capture more market share, charge higher markups

Takeaway - what the static model misses

• With dynamics and endogenous customer capital,

► Leader produce more \Rightarrow accumulate more $k_i \Rightarrow$ increase innovation \Rightarrow larger $\frac{q_i}{q_{-i}} \Rightarrow$ leader produce more

- Amplified movements in productivity gap
- Amplified effect of innovation subsidy on concentration

Quantitative model

Quantitative model

- Dynamic duopoly, continuum of industries
- Two types of households, young and old 🔊
- Habit evolution: Accumulated past expenditure of average old household 🔊
- ullet Mass of fringe firms in addition to two dominant firms igodot
- ullet Follower have additional chance to catch up >>
- Entrant replacing follower > 🖘

Households

- Unit mass. Young \rightarrow old with probability ϵ^{γ} . Old \rightarrow dropout with probability ϵ^{O} ; replaced by young household
 - Mass of young and old: M^Y, M^O
- \bullet Consume goods by duopolist + continuum of fringe of mass ${\cal N}$
- Preferences

$$U_t^a = \ln C_t^a - L_t^a$$

 C_t^a : nested CES, outer nest elasticity of 1, inner nest elasticity of ρ stack

Households - Demand

• Firm *i*, sector *j*, time *t*

• Household demand for good *ijt* alternative back:

$$C_{ijt}^{Y} = \frac{p_{ijt}^{-\rho}}{p_{ijt}^{1-\rho} + p_{-ijt}^{1-\rho} + \int^{N} p_{fjt} (x)^{1-\rho} dx}$$

$$C_{ijt}^{O} = \frac{(k_{ijt})^{\theta} p_{ijt}^{-\rho}}{(k_{ijt})^{\theta} p_{-ijt}^{1-\rho} + (k_{-ijt})^{\theta} p_{-ijt}^{1-\rho} + (0.5)^{\theta} \int^{\mathcal{N}} p_{fjt}(x)^{1-\rho} dx}$$

メロト メポト メヨト メヨト

Households - Demand

• Firm *i*, sector *j*, time *t*

• Household demand for good *ijt* (alternative):

$$C_{ijt}^{Y} = \frac{p_{ijt}^{-\rho}}{p_{ijt}^{1-\rho} + p_{-ijt}^{1-\rho} + \int^{\mathcal{N}} p_{fjt}(x)^{1-\rho} dx}$$
$$C_{ijt}^{O} = \frac{(k_{ijt})^{\theta} p_{ijt}^{-\rho}}{(k_{ijt})^{\theta} p_{-ijt}^{1-\rho} + (k_{-ijt})^{\theta} p_{-ijt}^{1-\rho} + (0.5)^{\theta} \int^{\mathcal{N}} p_{fjt}(x)^{1-\rho} dx}$$

• Habits k_{ijt} affect old consumption, increases demand, decreases elasticity

Households - Habits

• Habits evolution (back)

$$\label{eq:stock} \begin{split} & [\mathsf{Stock} \text{ of habits tomorrow}] = (1-\delta) \, [\mathsf{Stock} \text{ of habits today}] + \\ & \delta \, [\mathsf{Relative expenditures today}] \end{split}$$

Duong Dang (UW-Madison)

January, 2025

• • = • • = •

- 一司

Households - Habits

Habits evolution Back

$$k_{ijt+1} = (1 - \delta) \underbrace{\frac{0.5\epsilon^{\mathsf{Y}}M^{\mathsf{Y}} + k_{ijt}M^{\mathcal{O}}(1 - \epsilon^{\mathcal{O}})}{\epsilon^{\mathsf{Y}}M^{\mathsf{Y}} + M^{\mathcal{O}}(1 - \epsilon^{\mathcal{O}})}}_{\delta \underbrace{\left[\frac{p_{ijt}C_{ijt}^{\mathsf{Y}}}{p_{ijt}C_{ijt}^{\mathsf{Y}} + p_{-ijt}C_{-ijt}^{\mathsf{P}}}\epsilon^{\mathsf{Y}}M^{\mathsf{Y}} + \frac{p_{ijt}C_{ijt}^{\mathcal{O}}}{p_{ijt}C_{ijt}^{\mathcal{O}} + p_{-ijt}C_{-ijt}^{\mathcal{O}}}M^{\mathcal{O}}(1 - \epsilon^{\mathcal{O}})\right]\frac{1}{\epsilon^{\mathsf{Y}}M^{\mathsf{Y}} + M^{\mathcal{O}}(1 - \epsilon^{\mathcal{O}})}}_{\text{Relative expenditures today}}$$

e expenditures today

Average of young households turning old tomorrow and old households alive tomorrow

Duong Dang (UW-Madison)

January, 2025

メロト メぼト メヨト メヨト

Households - Habits

• Habits evolution **back**

$$\begin{aligned} k_{ijt+1} &= (1-\delta) \frac{0.5\epsilon^{Y}M^{Y} + k_{ijt}M^{O}(1-\epsilon^{O})}{\epsilon^{Y}M^{Y} + M^{O}(1-\epsilon^{O})} + \\ \delta \left[\frac{p_{ijt}C_{ijt}^{Y}}{p_{ijt}C_{ijt}^{Y} + p_{-ijt}C_{-ijt}^{Y}} \epsilon^{Y}M^{Y} + \frac{p_{ijt}C_{ijt}^{O}}{p_{ijt}C_{ijt}^{O} + p_{-ijt}C_{-ijt}^{O}} M^{O}(1-\epsilon^{O}) \right] \frac{1}{\epsilon^{Y}M^{Y} + M^{O}(1-\epsilon^{O})} \end{aligned}$$

- External habits, accumulate from past expenditure of other old households
 - Average of young households turning old tomorrow and old households alive tomorrow
 - Representative old household consume more of good today \rightarrow like it more \rightarrow consume more tomorrow with less consideration for prices
 - Customer capital for the firms

Firms

- Duopolists compete in quantities (back)
 - For variable x, denote leader with \overline{x} and follower with \underline{x}
- Duopolist invest in R&D to increase productivity next period:
 - Production: $Y_{ijt} = q_{ijt} I_{ijt}$
 - ► Leader productivity: $\overline{q}_{jt+1} = \overline{D}_{jt}\lambda\overline{q}_{jt} + (1 \overline{D}_{jt})\overline{q}_{jt}$; $\overline{D}_{jt} = 1$ with prob. $\overline{\iota}_{jt}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Firms

- Duopolists compete in quantities (back)
 - For variable x, denote leader with \overline{x} and follower with \underline{x}
- Duopolist invest in R&D to increase productivity next period:
 - Production: $Y_{ijt} = q_{ijt} I_{ijt}$
 - ► Leader productivity: $\overline{q}_{jt+1} = \overline{D}_{jt}\lambda\overline{q}_{jt} + (1 \overline{D}_{jt})\overline{q}_{jt}$; $\overline{D}_{jt} = 1$ with prob. $\overline{\iota}_{jt}$

2

$$\blacktriangleright \text{ Follower productivity: } \underline{q}_{jt+1} = \underline{D}_{jt} \left(1 - \Phi\right) \lambda \underline{q}_{jt} + \underbrace{\underline{D}_{jt} \Phi \overline{q}_{jt}}_{\text{Closing the gap}} + \left(1 - \underline{D}_{jt}\right) \underline{q}_{jt} ;$$

$$\underline{D}_{jt}=1$$
 with prob. $\underline{\iota}_{jt};~ \Phi=1$ with prob. ϕ

• Fringe productivity:
$$q_{fjt} = \overline{q}_{jt}^{\alpha} \underline{q}_{jt}^{1-\alpha}$$

• Cost of R&D:
$$\frac{\gamma}{2} \left(\log \left(\frac{1}{1 - \iota_{ijt}} \right) \right)$$

Firms - Entrants

- Prospective entrant in each sector each period
- Conducts R&D to innovate on the follower's technology
- If productivity higher than the follower's (ie successful innovation), replace the follower

Inherit follower customer capital stock back

Firms

- Define: $m = (\log q \log q_{-}) / \log \lambda$; $\pi = p * Y I$; \mathcal{R} indicator if firm is replaced by entrant
- Duopolist solve

$$v(k, k_{-}, m) = \max_{l, \iota} \pi(l, l_{-}, k, k_{-}, m) - \frac{\gamma}{2} \left(\log \left(\frac{1}{1 - \iota} \right) \right)^{2} + \beta E_{m', \mathcal{R}} \left[v(k', k'_{-}, m') (1 - \mathcal{R}) \right]$$

- Choice of I affects π today and k' tomorrow
- Choice of ι affects m', \mathcal{R} tomorrow equilation

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Calibration

Model parameterization

• Model calibrated to match moments from US in 1980

Param	Description	Value	Param	Description	Value
	External			Internal	
eta	Discount rate	0.99	λ	Growth step size	1.065
ϵ^{Y}	Prob. of turning old	0.0357	\mathcal{N}	Mass of fringe	6.5
ϵ^{O}	Prob. of death	0.0192	α	Fringe productivity weight	0.808
ρ	Sectoral elas. of substitution	10	γ	Cost of R&D	4.05
δ	Depreciation of consumer habit	0.0133	ϕ	Prob of closing gap, upon success	0.212
			heta	Strength of consumer habit	2.2

(ロ > 《 圖 > 《 画 > 《 画 >) 画 … のへで

Model moments

Moment	Model	Target	Source
Revenue productivity dispersion	0.203	0.20	Compustat
Relative change in market share after price	0.677	0.68	Bronnenberg et. al. (2012)
change			
Aggregate markups	1.281	1.28	Compustat
Growth rate	2.22%	2.2%	SF Fed
Mean market share	0.265	0.26	Mongey (2021)
Entry rate	1.87%	1.82%	BDS

オロトオポトオヨト ヨー うくで

Disciplining habit parameters

• Markets A, B with goods x, y; Market share S_A^x, S_B^x

January, 2025

< A

Disciplining habit parameters

• *i* moves $A \rightarrow B$, track *i*'s expenditure share S_{it}^{x}

• Before move, $S_{i0}^{x}=S_{A}^{x}$; Over time, $\lim_{t
ightarrow\infty}S_{it}^{x}=S_{B}^{x}$

Disciplining habit parameters

• $\frac{S_A^{\times} - S_{i1}^{\times}}{S_A^{\times} - S_B^{\times}}$ - period after move - informs strength of habits: Closer to 0 \Rightarrow stronger habits

• How fast
$$\frac{S_A^2 - S_{it}^x}{S_A^x - S_B^x}$$
 converges to 1 over time informs persistence

Disciplining habit parameters - Market analog

• Start at long run A. Market conditions (ie price) changes s.t. new long run

•
$$\frac{\underset{A}{is} B}{\underset{A}{S_A^{\times} - S_B^{\times}}}$$
 informs strength of habits

Disciplining habit parameters - Implementation

- Initial state A:
 - Same productivity across 2 firms; set $k_A^x > 0.5$ at long run level; calculate share S_A^x
- Change market condition:
 - Firm x innovates; with $k^x = k_A^x$, obtain new price under eqm policy rules
 - Hold price and productivity constant, get new long run shares S^x_B and track evolution of shares S^x_{it}
- \bullet Calibrate strength of habits so that $\frac{S_A^\times-S_{l1}^\times}{S_A^\times-S_B^\times}$ matches target

イロト 不得下 イヨト イヨト

Empirical support

Empirical support

- Run analysis at industry level:
 - ► Relationship between customer capital and innovation efforts across leaders/followers
- Proxy for strength of customer capital using expenditure share by older households in industry
- ullet Project difference in innovation between leaders and followers on proxy igsimes
- Compare to regression on model simulated data 🔊

• Expenditure share by older households proxy:

• Consumption significantly more persistent for households age 35 and older (Bornstein 2021) \sim larger customer capital effect

Proxy for strength of customer capital at the industry level back

Image: A matrix

K A E K A E K

Industry panel

• Data:

- Panel of industries, 1990 to 2019
- ► R&D from Compustat, consumption share from Consumer Expenditure Survey
- ► Restrict to industries with high percentage of output used as final goods
- Take average observations in bins of 3 years

Age composition of demand

- Comovements of older households expenditure share with R&D spending difference between leader and follower
- Regressions:

$$Y_{jt} = \gamma S_{jt} + \eta A_{jt} + \delta_j + \nu_t + \varepsilon_{jt}$$

- Y_{jt}: Difference in R&D spending of top 90th productive firms and other firms in industry, standardized
- S_{jt} : Share of expenditures by households age 35 and over
- ► **A**_{jt}: Controls: Standard deviation of log revenue productivity; Total household expenditure on industry

Age composition of demand

Dep var	R&D _{jt}	$\log\left(1+R\&D\right)_{jt}$
S_{jt}	10.07	11.96
	(1.72)	(2.36)
N ind	28	28
N ind \times time	224	224

T-stat in parentheses. Heteroskedastic robust standard errors.

Duong Dang (UW-Madison)

Customer capital and firm innovation

January, 2025

ъ

メロト メぼト メヨト メヨト

Age composition of demand

• Larger share of expenditure from older households:

Larger difference in innovation between top and non-top firms

Consistent with model

K A E K A E K

< A

Quant. model comparison

Simulate model along transition path of ϵ^{O} to match fraction of older households from 1960 to 2060

• Run regression on simulated sectors from 1990 to 2019:

Project R&D spending difference between high and low productivity firms in sector, standardized, on share of expenditure by older households (back)

Quant. model comparison

	Simulated	Emp	irical
R&D	6.60	11.89	10.07
		(-0.52, 24.30)	(-1.45, 21.59)
$\log(1 + R\&D)$	6.62	10.41	11.96
		(3.34, 17.62)	(1.97, 21.95)
FE	Ind	Ind	Ind, Time

95% confidence interval in parentheses

January, 2025

メロト メポト メヨト メヨト

Quantifying effect of aging

demographics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Aging demographics - Comparing BGPs

 \bullet Decrease $\epsilon^{\cal O}$ to match fraction of older households in 2020

	1	Model	Data
Fraction of older households	0.65	0.72	Dutu
R&D divergence	0.0171	+0.115 std	+0.524 std
Revenue productivity dispersion	0.203	+0.053	+0.113
Aggregate markups	1.281	+0.074	+0.11
Mean market share	0.265	+0.032	+0.05
Entry/Exit rate	1.87%	-0.47%	-0.51%
Growth rate	2.22%	+0.04%	-0.36%

(日)

Aging demographics - Along the transition

• Transition along observed and predicted path of fraction of older households from 1960 to 2060, starting from BGP (Fig. (Pol)

Vear	Model		Data	
i cai	1980	2020	1980-2020 change	
R&D divergence	0.0178	+0.151 std	+0.524 std	
Revenue productivity dispersion	0.203	+0.01	+0.113	
Aggregate markups	1.28	+0.02	+0.11	
Mean market share	0.264	+0.017	+0.05	
Entry/Exit rate	1.86%	-0.51%	-0.51%	
			・ロト ・西ト ・ヨト ・ヨン	

Aging demographics - Along the transition

Figure: Evolution of measures along the transition back

Duong Dang (UW-Madison)

Customer capital and firm innovation

Effect of aging demographics

- $\bullet\,$ More weight on older households in demand $\rightarrow\,$ stronger effect of customer capital for firms
 - Leaders enjoy larger pool of customers with strong habits to sell to \sim more k for leaders
 - Followers sell less as pool of customers without habits for leader's good shrink ~ less k for followers
 - \blacktriangleright \Rightarrow Larger difference in innovation \Rightarrow Leaders widen productivity gap over followers
 - \blacktriangleright \Rightarrow Increased concentration, increased markups

Effect of aging demographics

• Aging demographics can account for sizable portion of trends in revenue productivity dispersion, aggregate markups, concentration

► Comparing BGPs, changes are around 50% of observed trends

 Over the transition, changes are around 10%-35% of observed trends; predicted to keep increasing

Innovation subsidies with customer

capital

◆□▶ ◆舂▶ ◆き▶ ◆き▶ き のへで

Policy motivation

- Equilibrium inefficient:
 - Low production: Firm charge markups
 - ▶ Low innovation: Firm profit gains < Social gains
- Government can improve on equilibrium through mix of production subsidy and innovation subsidy
- Consider subsidy to entry and incumbent R&D
 - Compare to BGP without customer capital

Subsidy to R&D

10% subsidy to PPD cost	With customer	Without	
	capital	customer capital	
Revenue productivity dispersion	+9.38%	+1.66%	
Mean market share	+2.84%	+1.11%	
Aggregate Markups	+1.32%	+0.39%	
Entry rate	-5.55%	+0.41%	
Growth rate	+8.64%	+8.62%	
Welfare (CE)	+4.24%	+4.15%	
*Percentage deviation from	Percentage deviation from baseline		

Duong Dang (UW-Madison)

 Leader and follower innovation increase proportionally ⇒ innovation difference increase ⇒ widen productivity gap

With customer capital, leader produce more ⇒ build more customer capital
 ⇒ innovate more ⇒ further widen productivity gap entry

Conclusion

• Customer capital affects firm innovation and industry concentration as consequence

- Changes in customer capital, associated with aging demographics, generates sizable portion of aggregate trends in productivity dispersion, concentration, markups
- Effect of innovation subsidies on market structure amplified with customer capital

Additional consideration for policy makers when designing policies

Subsidy to entry

10% subsidy to entry east	With customer	Without	
10% subsidy to entry cost	capital	customer capital	
Revenue productivity	10.719/	1.00%/	
dispersion	+0.71%	-1.09%	
Mean market share	-1.04%	-0.45%	
Aggregate Markups	-0.46%	-0.21%	
Entry rate	+8.20%	+6.52%	
Growth rate	+0.08%	+0.21%	
Welfare (CE)	+0.13%	+0.12%	
*Percentage deviation from baseline			

Duong Dang (UW-Madison)

Customer capital and firm innovation

э.

Subsidy to entry

• Entry subsidy decrease productivity dispersion, concentration, markups ma

• Entrant innovate on follower's tech. \Rightarrow higher entry reduce productivity gap

► Larger effect with customer capital: Lower productivity gap ⇒ lower k for leaders ⇒ lower innovation difference ⇒ lower productivity gap

Example of 2 industries

back

э

イロト 不同ト イヨト イヨト

Age composition of demand - scaled

Dep var	(R&D/Emp)	$\log \left(1 + R\&D ight) / Emp$	(R&D/Asset)	$\log (1 + R\&D) / Asset$	(R&D/Sale)	$\log (1 + R\&D) / Sale$
S	9.62	6.44	7.07	6.74	8.45	8.67
	(2.57)	(1.71)	(1.61)	(1.50)	(1.61)	(1.63)
N ind	28	28	28	28	28	28
N ind \times time	221	221	224	224	224	224

T-stat in parentheses. Heteroskedastic robust standard errors.

Customer capital and firm innovation

January, 2025

メロト メポト メヨト メヨト

Age composition of demand - weighted

Dep var	R&D _{jt}	$\log\left(1+\textit{R\&D}\right)_{jt}$
S_{jt}	4.86	14.51
	(0.80)	(2.20)
N ind	28	28
N ind \times time	224	224

T-stat in parentheses. Heteroskedastic robust standard errors.

Duong Dang (UW-Madison)

Customer capital and firm innovation

January, 2025

イロト 不得 トイヨト イヨト

Age composition of demand - more

Dep var		Top 90 th	В	ottom 90 th
	R&D _{jt}	$\log\left(1+R\&D\right)_{jt}$	R&D _{jt}	$\log \left(1 + R\&D ight)_{jt}$
S_{jt}	7.96	10.49	-0.38	-1.41
	(1.74)	(2.89)	(-0.16)	(-0.62)
N ind	28	28	28	28
N ind $\times time$	232	232	265	265

T-stat in parentheses. Heteroskedastic robust standard errors. back

Customer capital and firm innovation

(日)

Age composition of demand - patents

Dep var	$\log\left(1+CW ight)$	$\log\left(1+\mathit{CW} ight)/\mathit{Emp}$	$\log\left(1+\mathit{CW} ight)/\mathit{Asset}$	$\log\left(1+\mathit{CW} ight)/\mathit{Sale}$
S_{jt}	-3.07	10.53	15.03	14.67
	(-0.59)	(1.72)	(1.66)	(1.73)
N ind	28	28	28	28
N ind \times time	235	235	235	235

CW: Citation weighted patent count, calculated for each firm i in time t as $\sum_{\rho \in P_i} 1 + \frac{C_{\rho}}{C}$. T-stat in parentheses.

Heteroskedastic robust standard errors.

Duong Dang (UW-Madison)

Customer capital and firm innovation

January, 2025

・ロト ・伊ト ・ヨト ・ヨト ・ヨ

Effect of consumption shares on dispersion

4

• Changes in dispersion affected by gap in innovation rate between leader and follower

$$\Delta Disp_{jt+1} = (\iota_{ijt} - \iota_{-ijt}) \ln \lambda$$

• Regression for dispersion:

$$\Delta Disp_{jt+1} = \beta S_{jt} + \theta D_{jt} + \alpha_j + \eta_t + \epsilon_{jt}$$

- $\Delta Disp_{jt+1}$: Change in the standard deviation of log revenue productivity
- S_{jt} : share of expenditures by households age 35 and over
- D_{jt} : Controls: Total household expenditure on industry

Duong Dang (UW-Madison)

Effect of consumption shares on dispersion

Dep var	$\Delta \textit{Disp}_{jt+1}$
S_{jt}	0.75
	(2.59)
N Ind	28
N Ind \times Time	258

back

э

メロト メポト メヨト メヨト

$\log F(\rho)$

back

January, 2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Recursive Equilibrium

• Household policies, firm policies, firm value, and law of motion where

- Household demand is optimal, given firm policies
- Given household demand and competitor's policies, firm value solves the firm's Bellman and policies are consistent with maximization

Households

back

• Budget:

$$P_t^a C_t^a + P_t^A A_{t+1}^a = L_t^a + \left(P_t^A + d_t\right) A_t^a$$

• Aggregator: $C_t^a = \exp\left[\int \ln C_{jt}^a dj\right]$

$$C_{jt}^{Y} = \left(0.5^{\frac{-\theta}{\rho}} \left[0.5^{\frac{\theta}{\rho}} \left(C_{1jt}^{Y}\right)^{\frac{\rho-1}{\rho}} + 0.5^{\frac{\theta}{\rho}} \left(C_{2jt}^{Y}\right)^{\frac{\rho-1}{\rho}} + 0.5^{\frac{\theta}{\rho}} \int^{\mathcal{N}} C_{fjt}^{Y}(x)^{\frac{\rho-1}{\rho}} dx\right]\right)^{\frac{\rho}{\rho-1}}$$

$$C_{jt}^{O} = \left(0.5^{\frac{-\theta}{\rho}} \left[k_{1jt}^{\frac{\theta}{\rho}} \left(C_{1jt}^{O}\right)^{\frac{\rho-1}{\rho}} + k_{2jt}^{\frac{\theta}{\rho}} \left(C_{2jt}^{O}\right)^{\frac{\rho-1}{\rho}} + 0.5^{\frac{\theta}{\rho}} \int^{\mathcal{N}} C_{ijt}^{O}(x)^{\frac{\rho-1}{\rho}} dx\right]\right)^{\frac{\rho}{\rho-1}}$$

メロト メポト メヨト メヨト

Dispersion trend

Figure: Between firm TFPR std and Sale/employment std

Duong Dang (UW-Madison)

Customer capital and firm innovation

イロト 不同ト イヨト イヨト

Dispersion cross-section

Duong Dang (UW-Madison)

Customer capital and firm innovation

January, 2025

R&D divergence

• Increasing divergence in R&D investment between more productive firms and less productive firms within industry

Figure: Difference of mean R&D spending between upper and lower firm quantiles by revenue

nroductivity back Duong Dang (UW-Madison)

Customer capital and firm innovation

January, 2025

Age expenditure trend

Figure: Share of expenditure of 36yo and above households, 3 digit NAICS back

Duong Dang (UW-Madison)

January, 2025

Firms

• Firm profits:
$$\pi_{ijt} = p_{ijt}C_{ijt} - \frac{C_{ijt}}{q_{ijt}} \equiv s_{ijt} - I_{ijt}$$
, where s_{ijt} is implicitly defined by

$$s_{ijt} = \frac{p_{ijt}^{1-\rho}}{p_{ijt}^{1-\rho} + p_{-ijt}^{1-\rho} + \int^{\mathcal{N}} p_{fjt} (x)^{1-\rho} dx} M_{y} + \frac{(2k_{ijt})^{\theta} p_{-ijt}^{1-\rho}}{(2k_{ijt})^{\theta} p_{-ijt}^{1-\rho} + (2k_{-ijt})^{\theta} p_{-ijt}^{1-\rho} + \int^{\mathcal{N}} p_{fjt} (x)^{1-\rho} dx} M_{o}$$
$$\frac{p_{-ijt}}{p_{ijt}} = \frac{I_{ijt}}{I_{-ijt}} \frac{s_{-ijt}}{s_{ijt}} \frac{q_{ijt}}{q_{-ijt}}; \quad \frac{p_{ijt}}{p_{fjt}} = \left(\frac{1}{q_{fjt}} \frac{\rho}{\rho-1}\right)^{-1} \frac{s_{ijt}I_{ijt}^{-1}}{q_{ijt}}$$

back

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 善 - のへで

Discrete choice demand setup

• Sectoral preference:

$$C_{jt}^{Y} = \max_{ijt} \left[\exp\left(\frac{1}{\rho - 1}\epsilon_{ijt}\right) C_{ijt}^{a} \right]$$
$$C_{jt}^{O}\left(\{k_{ijt}\}\right) = \max_{ijt} \left[\exp\left(\frac{1}{\rho - 1}\left[\epsilon_{ijt} + \theta \ln\left(2k_{ijt}\right)\right]\right) C_{ijt}^{a} \right]$$

Duong Dang (UW-Madison)

January, 2025

• • = • • = •
Discrete choice demand setup

• Good chosen to solve:

$$\max_{ijt} - (
ho - 1) \ln p_{ijt} + \epsilon_{ijt}$$

► For old:

$$\max_{ijt} - (\rho - 1) \ln p_{ijt} + \epsilon_{ijt} + \theta \ln \left(2k_{ijt}\right)$$

with ϵ_{ijt} iid Type I Extreme Value

back

Image: A matrix

• • = • • = •

Summary stats

Duong Dang (UW-Madison)

	Difference		
	5	R&D	log(1+R&D)
Std, controlling for ind and time	0.014	21.97	0.83

back

э.

イロト 不得 トイヨト イヨト

Simple model - Discrete choice

- Unit mass households, 1 unit of endowment to spend (back)
 - ▶ Preference: $\exp\left(\frac{1}{\rho-1}\left[\epsilon_i^h + \theta \ln(k_i)\right]\right)c_i$ for $i \in \{1,2\}$ with ϵ_i^h iid extreme value shocks
 - * Habits/Customer capital (k_1, k_2) ; Habit strength θ
 - Household choice: $i^h = \arg \max_i (1 \rho) \log p_i + \theta \log k_i + \epsilon_i^h$
 - Choice probability of choosing *i* for household *h*:

$$\frac{k_i^\theta p_i^{1-\rho}}{k_i^\theta p_i^{1-\rho} + k_{-i}^\theta p_{-i}^{1-\rho}}$$

January, 2025

Eqm Profits

$$\pi \left(k_i / k_{-i}, q_i / q_{-i} \right) = \frac{\left(\frac{k_i^{\theta/\rho}}{k_{-i}^{\theta/\rho}} \left(\frac{q_i}{q_{-i}} \right)^{(\rho-1)/\rho} + \frac{1}{\rho} \right) \frac{k_i^{\theta/\rho}}{k_{-i}^{\theta/\rho}} \left(\frac{q_i}{q_{-i}} \right)^{(\rho-1)/\rho}}{\left[1 + \frac{k_i^{\theta/\rho}}{k_{-i}^{\theta/\rho}} \left(\frac{q_i}{q_{-i}} \right)^{(\rho-1)/\rho} \right]^2}$$

back

January, 2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Relevance of Customer Capital

- Brand capital 6-25% of firm value (Belo et. al. 2022)
- Product familiarity associated with lower default risk (Larkin 2013)
- Differences in customer base accounts for 80% sale variances (Einav et. al. 2021, Afrouzi et. al. 2023)
- Firm spending on advertising, sales expenditures, customer service around 2/3 of physical capital spending (He et. al. 2024)
- Firms stabilize prices to maintain long-run customer relationship (Blinder et. al. 1998, Fabiani et. al. 2006)
- New firm formation declines when consumer inertia rises (Bornstein 2021) (back